Helical junctions as determinants for RNA folding: origin of tertiary structure stability of the hairpin ribozyme.
نویسندگان
چکیده
Helical junctions are ubiquitous structural elements that govern the folding and tertiary structure of RNAs. The tobacco ringspot virus hairpin ribozyme consists of two helix-loop-helix elements that lie on adjacent arms of a four-way junction. In the active form of the hairpin ribozyme, the loops are in proximity. The nature of the helical junction determines the stability of the hairpin ribozyme tertiary structure [Walter, N. G., Burke, J. M., and Millar, D. P. (1999) Nat. Struct. Biol. 6, 544-549] and thus its catalytic activity. We used two-, three-, and four-way junction hairpin ribozymes as model systems to investigate the thermodynamic basis for the different tertiary structure stabilities. The equilibrium between docked and extended conformers was analyzed as a function of temperature using time-resolved fluorescence resonance energy transfer (trFRET). As the secondary and tertiary structure transitions overlap, information from UV melting curves and trFRET had to be combined to gain insight into the thermodynamics of both structural transitions. It turned out that the higher tertiary structure stability observed in the context of a four-way junction is the result of a lower entropic cost for the docking process. In the two- and three-way junction ribozymes, a high entropic cost counteracts the favorable enthalpic term, rendering the docked conformer only marginally stable. Thus, two- and three-way junction tertiary structures are more sensitive toward regulation by ligands, whereas four-way junctions provide a stable scaffold. Altogether, RNA folding and stability appear to be governed by principles similar to those for the folding of proteins.
منابع مشابه
Tuning RNA folding and function through rational design of junction topology
Structured RNAs such as ribozymes must fold into specific 3D structures to carry out their biological functions. While it is well-known that architectural features such as flexible junctions between helices help guide RNA tertiary folding, the mechanisms through which junctions influence folding remain poorly understood. We combine computational modeling with single molecule Förster resonance e...
متن کاملEnergetics of hydrogen bond networks in RNA: hydrogen bonds surrounding G+1 and U42 are the major determinants for the tertiary structure stability of the hairpin ribozyme.
The hairpin ribozyme, a small catalytic RNA consisting of two helix-loop-helix motifs, serves as a paradigm for RNA folding. In the active conformer, the ribozyme is docked into a compact structure via loop-loop interactions. The crystal structure of the docked hairpin ribozyme shows an intricate network of hydrogen bonding interactions at the docking interface, mediated by the base, sugar, and...
متن کاملEntropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme.
Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodyna...
متن کاملThermodynamics of the Hairpin Ribozyme from All-Atom Simulations
The structure of the self-cleaving hairpin ribozyme is well characterized, and its folding has been examined in bulk and by single-molecule fluorescence, establishing the importance of cations in the stability of the native fold. Here we describe the first all-atom folding simulations of the hairpin ribozyme, using a version of a Go potential with separate secondary and tertiary structure energ...
متن کاملThermodynamics and kinetics of the hairpin ribozyme from atomistic folding/unfolding simulations.
We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a Monte Carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 39 42 شماره
صفحات -
تاریخ انتشار 2000